
MATH 245 F24, Exam 3 Solutions

1. Carefully define the following terms: intersection, nonempty.

For any two sets S, T , their intersection is the set given by {x : x ∈ S ∧ x ∈ T}. A set S is nonempty if it
does not equal the empty set (equivalently, if it contains at least one element).

2. Carefully define the following terms: inverse (relation), transitive.

For any relation R from some set S to some set T , the inverse is the relation from T to S given by
{(b, a) : (a, b) ∈ R}. A relation R on some set S is transitive if it satisfies: ∀x, y, z ∈ S, (xRy∧yRz)→ (xRz).

3. Let R = {x ∈ Z : x|24}, S = {x ∈ Z : 2|x}, T = {x ∈ Z : 3|x}. Prove or disprove that R ⊆ S ∪ T .

The statement is false, and requires a counterexample. There are exactly two to choose from: 1 and −1.
Let’s pick −1. We need to show that −1 ∈ R and also that −1 /∈ S ∪ T .

Note that (−1)(−24) = 24, and −24 ∈ Z, so −1 ∈ R. Suppose now that 2k = −1. Then k = −0.5 /∈ Z, so
2 - −1 and hence −1 /∈ S. Suppose now that 3j = −1. Then j = −1/3 /∈ Z, so 3 - −1 and hence −1 /∈ T .
By the conjunction semantic theorem, (−1 /∈ S) ∧ (−1 /∈ T ). By De Morgan’s Law (for propositions),
¬((−1 ∈ S) ∨ (−1 ∈ T )), and hence ¬(−1 ∈ S ∪ T ) (definition of ∪). Lastly we conclude −1 /∈ S ∪ T , as
desired.

ALTERNATE SOLUTION: We first prove that −1 ∈ R because (−1)(−24) = 24 and −24 ∈ Z. Now, we
continue by way of contradiction. Suppose that −1 ∈ S ∪ T . Then −1 ∈ S ∨ −1 ∈ T . We have two cases.
Case −1 ∈ S: Then there is k ∈ Z with 2k = −1, so k = −0.5. But k /∈ Z, so this case can’t happen.
Case −1 ∈ T : Then there is j ∈ Z with 3j = −1, so j = −1/3. But j /∈ Z, so this case too can’t happen.
Hence neither case can happen! We have a contradiction, so −1 /∈ S ∪ T , as desired.

4. Let S, T be sets. Suppose that S∆T = S \ T . Prove that T ⊆ S.

Let x ∈ T be arbitrary. We will proceed, in two cases, to prove that x ∈ S.
Case x ∈ S: Well that was easy, x ∈ S already.
Case x /∈ S: By conjunction, x ∈ T ∧x /∈ S. By addition, (x ∈ S∧x /∈ T )∨ (x ∈ T ∧x /∈ S). Hence x ∈ S∆T .
Since, by hypothesis, S∆T = S \ T , we have x ∈ S \ T . Hence x ∈ S ∧ x /∈ T . By simplification, x ∈ S.

In both cases, x ∈ S.

ALTERNATE SECOND CASE: Case x /∈ S: Proceed the same way, but get to a contradiction (e.g. x ∈ S
and x /∈ S), so this second case cannot happen. Now the wrapup is “In the sole remaining case, x ∈ S” rather
than “In both cases, x ∈ S”.

COMPLETELY DIFFERENT SOLUTION (found by a student): Argue by contradiction, suppose that
T * S. Then there would be some x ∈ T with x /∈ S. By conjunction, x ∈ T ∧ x /∈ S. By addition,
(x ∈ S ∧ x /∈ T ) ∨ (x ∈ T ∧ x /∈ S). Hence x ∈ S∆T . Since, by hypothesis, S∆T = S \ T , we have x ∈ S \ T .
Hence x ∈ S ∧ x /∈ T , and by simplification x ∈ S. This is a contradiction since we assumed that x /∈ S.

5. Find a set S with
∣∣S ∩ 2S×S

∣∣ = 2. Give S carefully, in list notation.

Note that S × S is a set containing exclusively ordered pairs, and 2S×S is a set containing exclusively (sets
containing ordered pairs). Exactly two elements of S will need to also be elements of 2S×S , so those two
elements must be sets containing ordered pairs. Many solutions are possible.

NORMAL SOLUTION: Take S = {a, b, {(a, a)}, {(a, b), (b, b)}}. Note that a ∈ S, so (a, a) ∈ S × S, so
{(a, a)} ⊆ S × S, and thus {(a, a)} ∈ 2S×S . Similarly, {(a, b), (b, b)} ∈ 2S×S . These are the two elements in
S ∩ 2S×S .

SLICK SOLUTION: Take S = {∅, S × S}. Each of ∅ and S × S are subsets of S × S, so they are elements
of 2S×S . Hence in fact S ⊆ 2S×S so

∣∣S ∩ 2S×S
∣∣ = |S|. However, the price of this slick solution is that now

we need to show that S × S 6= ∅, because otherwise |S| = 1, which is too small. This is done by noting that
(∅, ∅) ∈ S × S, so S × S is nonempty.



6. Let S, T be sets with T ⊆ S. Let R be a trichotomous relation on S. Prove that R|T is trichotomous.

Let x, y ∈ T , and suppose that (x, y) /∈ R|T and also (y, x) /∈ R|T . Since T ⊆ S, also x, y ∈ S. Since R
is trichotomous, x = y ∨ (x, y) ∈ R ∨ (y, x) ∈ R, which gives three cases. However, case (x, y) ∈ R cannot
happen, because then (x, y) ∈ R|T (since x, y ∈ T and (x, y) ∈ R), which we know not to be the case. Also,
case (y, x) ∈ R cannot happen either, because then, similarly, (y, x) ∈ R|T , which we also know not to be the
case. Hence, x = y.

ALTERNATE ENDING: Instead of three cases, we can use disjunctive syllogism twice to go from x =
y ∨ ((x, y) ∈ R) ∨ ((y, x) ∈ R), (x, y) /∈ R, and (y, x) /∈ R, to x = y.

7. R is a relation on S = {1, 2}, and R 6= Rempty. Prove or disprove: R is symmetric and antisymmetric, if and
only if, R = Rdiagonal.

The hardest part of this problem is understanding how all the words make sense together. The statement has
two halves. One half is “If R = Rdiagonal, then R is symmetric and antisymmetric”. This half happens to be
true, though it doesn’t matter. The other half is “If R is symmetric and antisymmetric, then R = Rdiagonal”.
This half is not true (hence the whole thing is not true), and requires a counterexample. A counterexample
needs to be a relation on S that is symmetric, antisymmetric, but not equal to Rdiagonal or Rempty. A hint
on how to find such a relation was Exercise 10.9, in which you proved that such a relation would be a subset
of Rdiagonal. Two counterexamples are possible: {(1, 1)} and {(2, 2)}.
Let’s prove that R = {(1, 1)} is a counterexample. Note that R 6= Rempty since (1, 1) ∈ R and (1, 1) /∈ Rempty.
Also, R 6= Rdiagonal since (2, 2) ∈ Rdiagonal but (2, 2) /∈ R. If (x, y) ∈ R, then (x, y) = (1, 1), so x = y = 1,
so also (y, x) ∈ R. This proves that R is symmetric. If instead xRy ∧ yRx, then again (x, y) = (1, 1) so
x = y = 1, and in particular x = y. This proves that R is antisymmetric.

8. Let S,U be sets with S ⊆ U . Prove that S ∪ Sc = U .
Note: This is part of Theorem 9.2. Do not use the theorem to prove itself!

Proving S ∪ Sc ⊆ U : Let x ∈ S ∪ Sc. Then x ∈ S ∨ x ∈ Sc. Two cases. If x ∈ S then (since S ⊆ U) x ∈ U .
If instead x ∈ Sc then x ∈ U \ S so x ∈ U ∧ x /∈ S, so by simplification x ∈ U . In both cases x ∈ U .
Proving U ⊆ S ∪ Sc: Let x ∈ U . Two cases. If x ∈ S then by addition x ∈ S ∨ x ∈ Sc, so x ∈ S ∪ Sc. If
instead x /∈ S then by conjunction x ∈ U ∧ x /∈ S, so x ∈ U \ S, so x ∈ Sc. Now, by addition x ∈ S ∨ x ∈ Sc,
so x ∈ S ∪ Sc. In both cases, x ∈ S ∪ Sc.

9. Let S be a set with relation R. Let R2 be the reflexive closure of R. Suppose R1 satisfies R ⊆ R1 ⊆ R2.
Suppose also that R1 is reflexive (on S). Prove that R1 = R2.

R1 ⊆ R2 is part of the hypothesis, so it remains to prove that R2 ⊆ R1. Let x ∈ R2, and so x ∈ R ∪ {(a, a) :
a ∈ S}. Hence x ∈ R ∨ x ∈ {(a, a) : a ∈ S}. Two cases.
Case x ∈ R: Since R ⊆ R1, also x ∈ R1.
Case x ∈ {(a, a) : a ∈ S}: So, x = (a, a) for some a ∈ S. Since R1 is reflexive, and a ∈ S, in fact (a, a) ∈ R1.
Hence, x ∈ R1.

In both cases, x ∈ R1.

NOTE: This problem proves that the reflexive closure is parsimonious, the “smallest possible” reflexive
relation that contains R.

10. Set S = R \ {0}. Prove that |S| = |R|.

We need a pairing between S and R. Most elements should be paired with themselves, since S,R are almost
the same set. Here is one possible pairing, the most natural one:

For every a ∈ S, we pair a↔ b, where b =

{
a− 1 a ∈ N
a a /∈ N

}
∈ R.

Any pairing that works is good enough, but here’s an explanation if the pairing alone doesn’t make sense:
Set T = R \N0, and note that S = T ∪N while R = T ∪N0. We pair everything in T with itself, i.e. if x ∈ T
then x↔ x. What’s left is to pair N with N0, and we’ve done this already in class (it was the first example
with equicardinal infinite sets), pairing x↔ x− 1.


