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MATH 245 F24, Exam 3 Solutions

Carefully define the following terms: intersection, nonempty.
For any two sets S, T, their intersection is the set given by {z : z € SAx € T}. A set S is nonempty if it
does not equal the empty set (equivalently, if it contains at least one element).

Carefully define the following terms: inverse (relation), transitive.

For any relation R from some set S to some set T, the inverse is the relation from T to S given by
{(b,a) : (a,b) € R}. A relation R on some set S is transitive if it satisfies: Vz,y,z € S, (zRyAyRz) — (2Rz).

Let R={x€Z:x24}, S={x € Z: 2|z}, T = {x € Z: 3|z}. Prove or disprove that R C SUT.
The statement is false, and requires a counterexample. There are exactly two to choose from: 1 and —1.
Let’s pick —1. We need to show that —1 € R and also that —1 ¢ SUT.

Note that (—1)(—24) = 24, and —24 € Z, so —1 € R. Suppose now that 2k = —1. Then k = —0.5 ¢ Z, so
21 —1 and hence —1 ¢ S. Suppose now that 35 = —1. Then j = —1/3 ¢ Z, so 31 —1 and hence —1 ¢ T.
By the conjunction semantic theorem, (—1 ¢ S) A (=1 ¢ T). By De Morgan’s Law (for propositions),
—((-1 € S)Vv (-1 €T)), and hence =(—1 € SUT) (definition of U). Lastly we conclude —1 ¢ SUT, as
desired.

ALTERNATE SOLUTION: We first prove that —1 € R because (—1)(—24) = 24 and —24 € Z. Now, we
continue by way of contradiction. Suppose that —1 € SUT. Then —1 € SV —1 € T. We have two cases.
Case —1 € S: Then there is k € Z with 2k = —1, so k = —0.5. But k ¢ Z, so this case can’t happen.

Case —1 € T: Then there is j € Z with 3j = —1, so j = —1/3. But j ¢ Z, so this case too can’t happen.
Hence neither case can happen! We have a contradiction, so —1 ¢ SUT, as desired.

Let S, T be sets. Suppose that SAT = S\ T. Prove that T C S.

Let x € T be arbitrary. We will proceed, in two cases, to prove that x € S.

Case z € S: Well that was easy, € S already.

Case x ¢ S: By conjunction, z € T Ax ¢ S. By addition, (x € SAz ¢ T)V(zx € TAxz ¢ S). Hence x € SAT.
Since, by hypothesis, SAT = S\ T, we have x € S\ T. Hence x € S Az ¢ T. By simplification, = € S.

In both cases, z € S.

ALTERNATE SECOND CASE: Case x ¢ S: Proceed the same way, but get to a contradiction (e.g. = € S
and x ¢ S), so this second case cannot happen. Now the wrapup is “In the sole remaining case, € S” rather
than “In both cases, x € 5.

COMPLETELY DIFFERENT SOLUTION (found by a student): Argue by contradiction, suppose that
T ¢ S. Then there would be some z € T with ¢ S. By conjunction, x € T Az ¢ S. By addition,
(xeSANx¢T)V(reT Nz ¢S). Hence z € SAT. Since, by hypothesis, SAT = S\ T, we have z € S\ T
Hence x € S Az ¢ T, and by simplification « € S. This is a contradiction since we assumed that = ¢ S.

Find a set S with |S n 2SXS| = 2. Give S carefully, in list notation.

Note that S x S is a set containing exclusively ordered pairs, and 25%% is a set containing exclusively (sets
containing ordered pairs). Exactly two elements of S will need to also be elements of 2°%% so those two
elements must be sets containing ordered pairs. Many solutions are possible.

NORMAL SOLUTION: Take S = {a,b,{(a,a)},{(a,b),(b,b)}}. Note that a € S, so (a,a) € S x S, so
{(a,a)} € S x S, and thus {(a,a)} € 29%5. Similarly, {(a,b), (b,b)} € 29%5. These are the two elements in
S n2sxs,

SLICK SOLUTION: Take S = {0, S x S}. Each of §) and S x S are subsets of S x S, so they are elements
of 29%5. Hence in fact S C 2% so IS N 2SXS| = |S|. However, the price of this slick solution is that now

we need to show that S x S # @, because otherwise |S| = 1, which is too small. This is done by noting that
(0,0) € S xS, s0S xS is nonempty.
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Let S, T be sets with ' C S. Let R be a trichotomous relation on S. Prove that R|r is trichotomous.

Let x,y € T, and suppose that (z,y) ¢ R|r and also (y,x) ¢ R|p. Since T' C S, also z,y € S. Since R
is trichotomous, z = y V (z,y) € RV (y,x) € R, which gives three cases. However, case (z,y) € R cannot
happen, because then (z,y) € R|r (since z,y € T and (z,y) € R), which we know not to be the case. Also,
case (y,z) € R cannot happen either, because then, similarly, (y, ) € R|r, which we also know not to be the
case. Hence, z = y.

ALTERNATE ENDING: Instead of three cases, we can use disjunctive syllogism twice to go from x =
yV ((z,y) € R)V((y,2) € R), (z,y) ¢ R, and (y,2) ¢ R, to x = y.

R is a relation on S = {1,2}, and R # Rempty. Prove or disprove: R is symmetric and antisymmetric, if and
only if, R = Raiagonal-

The hardest part of this problem is understanding how all the words make sense together. The statement has
two halves. One half is “If R = Rgiagonal, then R is symmetric and antisymmetric”. This half happens to be
true, though it doesn’t matter. The other half is “If R is symmetric and antisymmetric, then R = Raiagonar” -
This half is not true (hence the whole thing is not true), and requires a counterexample. A counterexample
needs to be a relation on S that is symmetric, antisymmetric, but not equal to Raiagonat OF Rempty. A hint
on how to find such a relation was Exercise 10.9, in which you proved that such a relation would be a subset
of Rgiagonal- Two counterexamples are possible: {(1,1)} and {(2,2)}.

Let’s prove that R = {(1,1)} is a counterexample. Note that R # Rempty since (1,1) € R and (1,1) ¢ Rempry-
Also, R # Ragiagonal since (2,2) € Raiagonal but (2,2) ¢ R. If (z,y) € R, then (z,y) = (1,1),s0 z =y = 1,
so also (y,z) € R. This proves that R is symmetric. If instead xRy A yRx, then again (z,y) = (1,1) so
x =y =1, and in particular x = y. This proves that R is antisymmetric.

Let S,U be sets with S C U. Prove that SU S¢ =U.

Note: This is part of Theorem 9.2. Do not use the theorem to prove itself!

Proving SUS® C U: Let x € SUSC. Then z € SV x € S°. Two cases. If € S then (since S CU) z € U.
If instead © € S then x € U\ S so x € U Az ¢ S, so by simplification = € U. In both cases z € U.

Proving U C SU S Let x € U. Two cases. If x € S then by addition x € SV zx € S° soxz € SUS°. If
instead ¢ S then by conjunction z € UAz ¢ S,sox € U\ S, so x € S°. Now, by addition z € SV z € S¢,
so x € SUSC. In both cases, x € SU S°.

Let S be a set with relation R. Let R be the reflexive closure of R. Suppose R; satisfies R C Ry C Rs.
Suppose also that R; is reflexive (on S). Prove that R; = Rs.

Ry C Rs is part of the hypothesis, so it remains to prove that Rs C Ry. Let 2 € Ry, and so € RU{(a,a) :
a € S} Hence z € RVz € {(a,a) : a € S}. Two cases.

Case ¢ € R: Since R C Ry, also x € R;.

Case z € {(a,a) : a € S}: So, z = (a,a) for some a € S. Since Ry is reflexive, and a € S, in fact (a,a) € R;.
Hence, x € R;.

In both cases, = € R;.

NOTE: This problem proves that the reflexive closure is parsimonious, the “smallest possible” reflexive
relation that contains R.

Set S =R\ {0}. Prove that |S| = |R|.

We need a pairing between S and R. Most elements should be paired with themselves, since S,R are almost
the same set. Here is one possible pairing, the most natural one:

For every a € S, we pair a <> b, where b = {al aGN} e R.

a a¢N
Any pairing that works is good enough, but here’s an explanation if the pairing alone doesn’t make sense:
Set T'= R\ Ny, and note that S = T UN while R = T UNy. We pair everything in T with itself, i.e. if z € T
then z <» . What’s left is to pair N with Ny, and we’ve done this already in class (it was the first example
with equicardinal infinite sets), pairing « +» x — 1.



